Part Number Hot Search : 
DDZX10C EGP30A STTA406 HS100 EN25F8 SDZ5V1WA LTC1504A 3S004
Product Description
Full Text Search
 

To Download NBSG86ABAEVB Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 NBSG86ABAEVB Evaluation Board Manual for NBSG86A
http://onsemi.com
EVALUATION BOARD MANUAL DESCRIPTION This document describes the NBSG86A evaluation board and the appropriate lab test setups. It should be used in conjunction with the device data sheet, which includes specifications and a full description of device operation. The board is used to evaluate the NBSG86A GigaCommTM differential Smart Gate multi-function logic gate, which can be configured as an AND/NAND, OR/NOR, XOR/XNOR, or 2:1 MUX. The OLS input of the NBSG86A is used to program the peak-to-peak output amplitude between 0 and 800 mV in five discrete steps. The board is implemented in two layers and provides a high bandwidth 50 W controlled impedance environment for higher performance. The first layer or primary trace layer is 5 mils thick Rogers RO6002 material, which is engineered to have equal electrical length on all signal traces from the NBSG86A device to the sense output. The second layer is 32 mils thick copper ground plane. For standard lab setup and test, a split (dual) power supply is required enabling the 50 W impedance from the scope to be used as termination of the ECL signals, where VTT is the system ground (VCC = 2.0 V, VTT = VCC - 2.0 V and VEE is -0.5 V or -1.3 V, see Setup 1). What measurements can you expect to make? The following measurements can be performed in the single-ended (Note 1) or differential mode of operation: * Frequency Performance * Output Amplitude (VOH /VOL) * Output Rise and Fall Time * Output Skew * Eye pattern generation * Jitter * VIHCMR (Input High Common Mode Range)
NOTE: 1. Single- ended meas urements can only be made at VCC - VEE = 3.3 V using this board setup.
Figure 1. NBSG86A Evaluation Board
(c) Semiconductor Components Industries, LLC, 2003
1
March, 2003 - Rev. 0
Publication Order Number: NBSG86ABAEVB/D
NBSG86ABAEVB
Setup for Time Domain Measurements
Table 1. Basic Equipment Needed
Description Power Supply with 2 Outputs Oscilloscope Differential Signal Generator Matched High Speed Cables with SMA Connectors Power Supply Cables with Clips Example Equipment (Note 1) HP6624A TDS8000 with 80E01 Sampling Head (Note 2) HP 8133A, Advantest D3186 Storm, Semflex Qty. 1 1 1 8 3 / 4 (Note 3)
1. This equipment was used to obtain the measurements included in this document. 2. The 50 GHz sample module was used in order to obtain accurate and repeatable rise, fall, and jitter measurements. 3. Additional power supply cable with clip is needed when output level select (OLS) tested (see device data sheet).
AND/NAND Function Setup
OUT
VTT = 0 V
VCC = 2.0 V VCC
Oscilloscope
OUT Signal Generator OUT1
GND SEL
D1
D1
Q
Channel 1
OUT1 SEL Amplitude = 400 mV Offset = 660 mV TRIGGER VEE = -1.3 V (3.3 V op) OLS* or VTT = 0 V VCC = 2.0 V VEE = -0.5 V (2.5 V op) *See NBSG86A data sheet pg 2. OLS Q VEE
Channel 2
D0
D0
TRIGGER
Figure 2. NBSG86A Board Setup - Time Domain (AND/NAND Function)
Connect Power Step 1:
1a. Connect the following supplies to the evaluation board via surface mount clips.
Power Supply Summary Table 3.3 V Setup VCC = 2.0 V VTT = GND VEE = -1.3 V 2.5 V Setup VCC = 2.0 V VTT = GND VEE = -0. 5V
http://onsemi.com
2
NBSG86ABAEVB
AND/NAND Function Setup (continued)
Connect the Inputs Step 2:
For Differential Mode (3.3 V and 2.5 V operation)
2a: Connect the differential outputs of the generator to the differential inputs of the device (D1/D1 and SEL/SEL). 2b: Connect the DO input to VTT. 2c: Connect the DO input to VCC. 2d: Connect the generator trigger to the oscilloscope trigger.
For Single-Ended Mode (3.3 V operation only)
2a: Connect an AC-coupled output of the generator to the desired differential input of the device. 2b: Connect the unused differential input of the device to VTT (GND) through a 50 W resistor. 2c: Connect the DO input to VTT. 2d: Connect the DO input to VCC. 2e: Connect the generator trigger to the oscilloscope trigger.
All Function Setups
Connect OLS (Output Level Select) to the required voltage to obtain desired output amplitude. Refer to the NBSG86A device data sheet page 2 OLS voltage table.
Setup Input Signal Step 3:
3a: Set the signal generator amplitude to 400 mV. Note that the signal generator amplitude can vary from 75 mV to 900 mV to produce a 400 mV DUT output. 3b: Set the signal generator offset to 660 mV (the center of a nominal RSECL output). Note that the VIHCMR (Input High Voltage Common Mode Range) allows the signal generator offset to vary as long as VIH is within the VIHCMR range. Refer to the device data sheet for further information. 3c: Set the generator output for a square wave clock signal with a 50% duty cycle, or for a PRBS data signal.
Connect Output Signals Step 4:
4a: Connect the outputs of the evaluation board (Q, Q) to the oscilloscope. The oscilloscope sampling head must have internal 50 W termination to ground.
NOTE: Where a single output is being used, the unconnected output for the pair must be terminated to VTT through a 50 W resistor for best operation. Unused pairs may be left unconnected. Since VTT = 0 V, a standard 50 W SMA termination is recommended.
http://onsemi.com
3
NBSG86ABAEVB
OR/NOR Function Setup
V = 2.0 V VTT = 0 V VTT = 0 V CC VCC = 2.0 V Oscilloscope GND Signal Generator Amplitude = 400 mV Offset = 660 mV OUT SEL Q Channel 1 D1 D1 VCC
OUT SEL OUT1 OLS D0 OUT1 OLS* TRIGGER *See NBSG86A data sheet pg 2. D0
Q VEE
Channel 2
VEE = -1.3 V (3.3 V op) or VEE = -0.5 V (2.5 V op)
TRIGGER
Figure 3. NBSG86A Board Setup - Time Domain (OR/NOR Function)
Connect Power Step 1:
1a: Connect the following supplies to the evaluation board via surface mount clips.
Power Supply Summary Table 3.3 V Setup VCC = 2.0 V VTT = GND VEE = -1.3 V 2.5 V Setup VCC = 2.0 V VTT = GND VEE = -0.5 V
http://onsemi.com
4
NBSG86ABAEVB
OR/NOR Function Setup (continued)
Connect the Inputs Step 2:
For Differential Mode (3.3 V and 2.5 V operation)
2a: Connect the differential outputs of the generator to the differential inputs of the device (D0/D0 and SEL/SEL). 2a: Connect the D1 input to VTT. 2b: Connect the D1 input to VCC. 2e: Connect the generator trigger to the oscilloscope trigger.
For Single-Ended Mode (3.3 V operation only)
2a: Connect an AC-coupled output of the generator to the desired differential input of the device. 2b: Connect the unused differential input of the device to VTT (GND) through a 50 W resistor. 2c: Connect the D1 input to VTT. 2d: Connect the D1 input to VCC. 2e: Connect the generator trigger to the oscilloscope trigger.
All Function Setups
Connect OLS (Output Level Select) to the required voltage to obtain desired output amplitude. Refer to the NBSG86A device data sheet page 2 OLS voltage table.
Setup Input Signal Step 3:
3a: Set the signal generator amplitude to 400 mV. Note that the signal generator amplitude can vary from 75 mV to 900 mV to produce a 400 mV DUT output. 3b: Set the signal generator offset to 660 mV (the center of a nominal RSECL output). Note that the VIHCMR (Input High Voltage Common Mode Range) allows the signal generator offset to vary as long as VIH is within the VIHCMR range. Refer to the device data sheet for further information. 3c: Set the generator output for a square wave clock signal with a 50% duty cycle, or for a PRBS data signal.
Connect Output Signals Step 4:
4a: Connect the outputs of the evaluation board (Q, Q) to the oscilloscope. The oscilloscope sampling head must have internal 50 W termination to ground.
NOTE: Where a single output is being used, the unconnected output for the pair must be terminated to VTT through a 50 W resistor for best operation. Unused pairs may be left unconnected. Since VTT = 0 V, a standard 50 W SMA termination is recommended.
http://onsemi.com
5
NBSG86ABAEVB
XOR/XNOR Function Setup
OUT1
VTT = 0 V
VCC = 2.0 V Oscilloscope
OUT1 Signal Generator Amplitude = 400 mV OUT Offset = 660 mV OUT OUT1
GND
D1
D1
VCC
SEL
Q
Channel 1
SEL OLS
Q VEE
Channel 2
D0
D0
OUT1 TRIGGER OLS* VEE = -1.3 V (3.3 V op) or VEE = -0.5 V (2.5 V op)
TRIGGER
*See NBSG86A data sheet pg 2.
Figure 4. NBSG86A Board Setup - Time Domain (XOR/XNOR Function)
Connect Power Step 1:
1a: Connect the following supplies to the evaluation board via surface mount clips.
Power Supply Summary Table 3.3 V Setup VCC = 2.0 V VTT = GND VEE = -1.3 V 2.5 V Setup VCC = 2.0 V VTT = GND VEE = -0.5 V
http://onsemi.com
6
NBSG86ABAEVB
XOR/XNOR Function Setup (continued)
Connect the Inputs Step 2:
For Differential Mode (3.3 V and 2.5 V operation)
2a: Connect the differential outputs of the generator to the differential inputs of the device (OUT OUT to SEL/SEL; OUT1/OUT1 to DO&D1/D0&D1 respectively). Step 2e: Connect the generator trigger to the oscilloscope trigger.
For Single-Ended Mode (3.3 V operation only)
2a: Connect an AC-coupled output of the generator to the desired differential input of the device. 2b: Connect the unused differential input of the device to VTT (GND) through a 50 W resistor. 2e: Connect the generator trigger to the oscilloscope trigger.
All Function Setups
Connect OLS (Output Level Select) to the required voltage to obtain desired output amplitude. Refer to the NBSG86A device data sheet page 2 OLS voltage table.
Setup Input Signal Step 3:
3a: Set the signal generator amplitude to 400 mV. Note that the signal generator amplitude can vary from 75 mV to 900 mV to produce a 400 mV DUT output. 3b: Set the signal generator offset to 660 mV (the center of a nominal RSECL output). Note that the VIHCMR (Input High Voltage Common Mode Range) allows the signal generator offset to vary as long as VIH is within the VIHCMR range. Refer to the device data sheet for further information. 3c: Set the generator output for a square wave clock signal with a 50% duty cycle, or for a PRBS data signal.
Connect Output Signals
Step 4:
4a: Connect the outputs of the evaluation board (Q, Q) to the oscilloscope. The oscilloscope sampling head must have internal 50 W termination to ground.
NOTE: Where a single output is being used, the unconnected output for the pair must be terminated to VTT through a 50 W resistor for best operation. Unused pairs may be left unconnected. Since VTT = 0 V, a standard 50 W SMA termination is recommended.
http://onsemi.com
7
NBSG86ABAEVB
2:1 MUX Function Setup
VTT = 0 V OUT GND OUT VCC = 2.0 V SEL D1 D1
VCC = 2.0 V Oscilloscope VCC
Q
Signal Generator
Channel 1
VCC = 0 V Amplitude = 400 mV Offset = 660 mV TRIGGER
Channel 2 SEL OLS Q VEE
D0
D0
OLS* VTT = 0 V VCC = 2.0 V *See NBSG86A data sheet pg 2.
VEE = -1.3 V (3.3 V op) or VEE = -0.5 V (2.5 V op)
TRIGGER
Figure 5. NBSG86A Board Setup - Time Domain (2:1 MUX Function)
Connect Power Step 1:
1a: Connect the following supplies to the evaluation board via surface mount clips.
Power Supply Summary Table 3.3 V Setup VCC = 2.0 V VTT = GND VEE = -1.3 V 2.5 V Setup VCC = 2.0 V VTT = GND VEE = -0.5
http://onsemi.com
8
NBSG86ABAEVB
2:1 MUX Function Setup (continued)
Connect the Inputs Step 2:
For Differential Mode (3.3 V and 2.5 V operation)
2a: Connect the differential outputs of the generator to the differential inputs of the device (D1/D1). 2b: Connect the D0 input to VTT and the D0 input to VCC. 2c: Connect the SEL input to VCC and the SEL input to VTT. 2d: Connect the generator trigger to the oscilloscope trigger.
For Single-Ended Mode (3.3 V operation only)
2a: Connect an AC-coupled output of the generator to the desired differential input of the device. 2b: Connect the unused differential input of the device to VTT (GND) through a 50 W resistor. 2c: Connect the D0 input to VTT and the D0 input to VCC. 2d: Connect the SEL input to VCC and the SEL input to VTT. 2e: Connect the generator trigger to the oscilloscope trigger.
All Function Setups
Connect OLS (Output Level Select) to the required voltage to obtain desired output amplitude. Refer to the NBSG86A device data sheet page 2 OLS voltage table.
Setup Input Signal Step 3:
3a: Set the signal generator amplitude to 400 mV. Note that the signal generator amplitude can vary from 75 mV to 900 mV to produce a 400 mV DUT output. 3b: Set the signal generator offset to 660 mV (the center of a nominal RSECL output). Note that the VIHCMR (Input High Voltage Common Mode Range) allows the signal generator offset to vary as long as VIH is within the VIHCMR range. Refer to the device data sheet for further information. 3c: Set the generator output for a square wave clock signal with a 50% duty cycle, or for a PRBS data signal.
Connect Output Signals Step 4:
4a: Connect the outputs of the evaluation board (Q, Q) to the oscilloscope. The oscilloscope sampling head must have internal 50 W termination to ground.
NOTE: Where a single output is being used, the unconnected output for the pair must be terminated to VTT through a 50 W resistor for best operation. Unused pairs may be left unconnected. Since VTT = 0 V, a standard 50 W SMA termination is recommended.
http://onsemi.com
9
NBSG86ABAEVB
Setup for Frequency Domain Measurements
Table 2. Basic Equipment
Description Power Supply with 2 outputs Vector Network Analyzer (VNA) 180 Hybrid Coupler Bias Tee with 50 W Resistor Termination Matched high speed cables with SMA connectors Power Supply cables with clips 4. Equipment used to generate example measurements within this document. Example Equipment (Note 4) HP 6624A R&S ZVK (10 MHz to 40 GHz) Krytar Model #4010180 Picosecond Model #5542-219 Storm, Semflex Qty. 1 1 1 1 3 3
Setup
Connect Power Step 1:
1a: Three power levels must be provided to the board for VCC, VEE, and GND via the surface mount clips. Using the split power supply mode, GND = VTT = VCC - 2.0 V.
Power Supply Connections 3.3 V Setup VCC = 2.0 V VTT = GND VEE = -1.3 V
NOTE:
For frequency domain measurements, 2.5 V power supply is not recommended because additional equipment (bias tee, etc.) is needed for proper operation. The input signal has to be properly offset to meet VIHCMR range of the device.
http://onsemi.com
10
NBSG86ABAEVB
Setup Test Configurations For Differential Operation
Small Signal Setup
Step 2:
Input Setup
2a: Calibrate VNA from 1.0 GHz to 12 GHz. 2b: Set input level to -35 dBm at the output of the 180 Hybrid coupler (input of the DUT).
Step 3: Output Setup
3a: Set display to measure S21 and record data.
Large Signal Setup
Step 2:
Input Setup
GHz. 2a: Calibrate VNA from 1.0 GHz to 12 GHz 10 2b: Set input levels to -2.0 dBm (500 mV) at the input of DUT.
Step 3: Output Setup
3a: Set display to measure S21 and record data.
PORT 1 GND 50 W
Rohde & Schwartz Vector Network Analyzer
PORT 2
1805 Hybrid Coupler
VTT = 0 V
VCC = 2.0 V GND
GND SEL
D1
D1
VCC Q
50 W
VCC = 2.0 V
Bias T
VTT = 0 V
SEL OLS D0 D0 VEE
Q
50 W GND
*See NBSG86A data sheet pg 2.
OLS*
VEE = -1.3 V (3.3 V op) VTT = 0 V VCC = 2.0 V
Figure 6. NBSG86A Board Setup - Frequency Domain (Differential 2:1 MUX Function - D1 Selected)
http://onsemi.com
11
NBSG86ABAEVB
Setup Test Configurations For Single-Ended Operation
Single-Ended Mode - Small Signal
Step 2:
Input Setup
2a: Calibrate VNA from 1.0 GHz to 12 GHz. 2b: Set input level to -35 dBm at the input of DUT.
Step 3: Output Setup
3a: Set display to measure S21 and record data.
Single-Ended Mode - Large Signal
Step 2:
Input Setup
2a: Calibrate VNA from 1.0 GHz to 12 GHz. 2b: Set input levels to +2 dBm (500 mV) at the input of DUT.
Step 3: Output Setup
3a: Set display to measure S21 and record data.
PORT 1
Rohde & Schwartz Vector Network Analyzer
PORT 2
GND 50 W VTT = 0 V VCC = 2.0 V GND GND SEL D1 D1 VCC Q 50 W
VCC = 2.0 V
Bias T
VTT = 0 V SEL OLS D0 D0 VEE Q 50 W GND
*See NBSG86A data sheet pg 2.
OLS*
VEE = -1.3 V (3.3 V op) VTT = 0 V VCC = 2.0 V
Figure 7. NBSG86A Board Setup - Frequency Domain (Differential 2:1 MUX Function - D1 Selected)
http://onsemi.com
12
NBSG86ABAEVB
More Information About Evaluation Board Design Considerations for >10 GHz operation While the NBSG86A is specified to operate at 12 GHz, this evaluation board is designed to support operating frequencies up to 20 GHz. The following considerations played a key role to ensure this evaluation board achieves high-end microwave performance: * Optimal SMA connector launch * Minimal insertion loss and signal dispersion * Accurate Transmission line matching (50 W) * Distributed effects while bypassing and noise filtering
SURFACE MOUNT CLIP VCC
OLS Surface Mount Clip T2 (l/2 @ 10 GHz) T3 (l/4 @ 10 GHz) T4 Open Circuit Stub
T6 C1 0 VTD1 1 1 0 D1 D1 VTD1 0 VTD0 1 1 0 D0 D0 VTD0 0 VTSEL (l/2 @ 10 GHz) T4 C1 0 NBSG86A Q0 T1 1 Rosenberger SMA Q0 1 Rosenberger SMA Rosenberger SMA T1 T1
T1
Rosenberger SMA
Rosenberger SMA Rosenberger SMA
T1 T1
0 T1 SEL 1 T1 SEL 1
T3 (l/4 @ 10 GHz)
Open Circuit Stub
Rosenberger SMA
Rosenberger SMA
VEE Surface Mount Clip
Figure 8. Evaluation Board Schematic
http://onsemi.com
13
T5
NBSG86ABAEVB
Table 3. Table 3. Parts List
Part No NBSG86ABA 32K243-40ME3 CO6BLBB2X5UX Description SiGe Differential Smart Gate with Output Level Select Gold plated connector 2 MHz - 30 GHz capacitor Manufacturer ON Semiconductor Rosenberger Dielectric Laboratories WEB address http://www.onsemi.com http://www.rosenberger.de http://www.dilabs.com
Table 4. Board Material
Material Rogers 6002 Copper Plating Thickness 5.0 mil 32 mil PIN 1
12.5 mil
1.37 mil Dielectric (5.0 mil) Thick Copper Base
Figure 9. Board Stack-up
Figure 10. Layout Mask for NBSG86A
5 dB
11 GHz
1 dB/
0 dB
START 1 GHz NOTE:
1 GHz/
STOP 12 GHz
The insertion loss curve can be used to calibrate out board loss if testing under small signal conditions.
Figure 11. Insertion Loss
http://onsemi.com
14
NBSG86ABAEVB
EXAMPLE TIME DOMAIN MEASUREMENT RESULTS
900 800 OUTPUT AMPLITUDE (mV) 700 600 500 400 300 200 100 RMS JITTER 0 0 1 2 3 4 5 6 7 8 9 10 0 *OLS = VEE OLS = VCC - 0.8 V OLS = FLOAT OLS = VCC 9 8 JITTEROUT ps (RMS) 7 6 5 4 3 2 1
OLS = VCC - 0.4 V
FREQUENCY (GHz)
Figure 12. VOUT/Jitter vs. Frequency (2:1 MUX Function) (VCC - VEE = 3.3 V @ 255C; Repetitive 1010 Input Data Pattern)
60 55 50 45 40 35 30 25 20 -40 2.5 V 3.3 V
TIME (ps)
-20
0
20 40 TEMPERATURE (C)
60
80
Figure 13. tr. vs. Temperature and Power Supply
60 55 50 TIME (ps) 45 40 35 30 25 20 -40 3.3 V 2.5 V
-20
0 20 40 TEMPERATURE (C)
60
80
Figure 14. tr. vs. Temperature and Power Supply
http://onsemi.com
15
NBSG86ABAEVB
EXAMPLE FREQUENCY DOMAIN MEASUREMENT RESULTS
50 dB 50 dB
10 dB
0 dB
10 dB
0 dB
-50 dB START 1 GHz 1 GHz/ STOP 12 GHz
-50 dB START 1 GHz 1 GHz/ STOP 12 GHz
Figure 15. NBSG86A: Small Signal Gain (S21) D0/D0 - Q0/Q0
Figure 16. NBSG86A: Small Signal Gain (S21) D1/D1 - Q0/Q0
50 dB
50 dB
10 dB
0 dB
10 dB
0 dB
-50 dB START 1 GHz 1 GHz/ STOP 12 GHz
-50 dB START 10 MHz 1 GHz/ STOP 12 GHz
Figure 17. NBSG86A: Large Signal Gain (S21) D0/D0 - Q0/Q0
Figure 18. NBSG86A: Large Signal Gain (S21) D1/D1 - Q0/Q0
http://onsemi.com
16
NBSG86ABAEVB
ADDITIONAL INFORMATION www.onsemi.com In all cases, the most up-to-date information can be found on our website. * Sample orders for devices and boards * New Product updates * Literature download/order * IBIS and Spice models
References
AND8075/D, Application Note, Board Mounting Considerations for the FCBGA Packages BRD8017/D, Brochure, Clock and Data Management Solutions NBSG86A/D, Data Sheet, 2.5V/3.3V SiGe Differential Smart Gate with Output Level Select
AND8077/D, Application Note, GigaCommE (SiGe) SPICE Modeling Kit
ORDERING INFORMATION
Orderable Part No NBSG86ABA NBSG86ABAR2 NBSG86ABAEVB Description SiGe Differential Smart Gate with Output Level Select SiGe Differential Smart Gate with Output Level Select NBSG86A Evaluation Board Package 4X4 mm FCBGA/16 4X4 mm FCBGA/16 Shipping 100 Units/Tray 500 Units/Reel
http://onsemi.com
17
NBSG86ABAEVB
Notes
http://onsemi.com
18
NBSG86ABAEVB
Notes
http://onsemi.com
19
NBSG86ABAEVB
GigaComm is a trademark of Semiconductor Components Industries, LLC.
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada JAPAN: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative.
http://onsemi.com
20
NBSG86ABAEVB/D


▲Up To Search▲   

 
Price & Availability of NBSG86ABAEVB

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X